
Pandacea Protocol - System Design Document (SDD)

Version: 1.1

Status: Draft

Date: July 12, 2025

Lead Engineer: Asa Conant

Related Documents: Pandacea Technical Whitepaper (v3.1),
Pandacea Go-to-Market Plan (v1.1)

1. Overview
1.1. Purpose

This System Design Document (SDD) provides the engineering blueprint for the
Pandacea Protocol Minimum Viable Product (MVP). It translates the architectural
concepts outlined in the Technical Whitepaper into concrete data models, service
interactions, and smart contract interfaces. This document will guide the development
team in building a secure, scalable, and robust initial version of the protocol.

1.2. MVP Scope & Objectives

The primary objective of the MVP is to validate the core economic loop of the
Pandacea Protocol within the autonomous warehouse logistics market.

Key Objectives:

1.​ Enable Earners (e.g., warehouse operators) to list and monetize specific,
high-value logistics data.

2.​ Enable Spenders (e.g., robotics AI developers) to discover, lease, and utilize this
data in a privacy-preserving manner.

3.​ Successfully implement and test the foundational economic mechanisms:
Heuristic-Based Pricing (PDVF), Dynamic Minimum Pricing (DMP), and
Reputation-Based Royalties (RBR).

4.​ Establish a secure and auditable "Safe Harbor" through verifiable consent on the
Polygon PoS network.

2. System Architecture

2.1. Logical Architecture Diagram

The diagram below illustrates the high-level components of the Pandacea Protocol
and their primary interactions.

graph TD​
 subgraph User Layer​
 A[MyData Agent
(Earner)]​
 B[Buyer-Side Agent
(Spender)]​
 end​
​
 subgraph Protocol Layer​
 C(P2P Network
- libp2p KAD-DHT)​
 D(Storage Layer
- IPFS/Filecoin)​
 E(Privacy Layer
- OpenMined PySyft)​
 end​
​
 subgraph Settlement Layer (Polygon PoS)​
 F[LeaseAgreement Contract]​
 G[RoyaltyDistributor Contract]​
 H[Reputation Contract]​
 I[PGT Token Contract]​
 end​
​
 A -- Publishes DataProduct --> C​
 B -- Discovers DataProduct --> C​
 C -- P2P Communication --> A​
 C -- P2P Communication --> B​
 A -- Negotiates Storage Deal --> D​
 B -- Initiates Lease --> F​
 F -- Interacts with --> G​
 F -- Interacts with --> H​
 F -- Interacts with --> I​
 A -- Approves Lease via --> F​
 E -- Facilitates Computation --> A​
 E -- Returns Result --> B​

2.2. Component Breakdown

●​ MyData Agent (Earner): A user-controlled application (initially desktop/server

for warehouse context) that manages data sources, enforces user policies (via
OPA), and acts as a P2P node for data leasing and privacy-preserving
computation.

●​ Buyer-Side Agent (Spender): A developer-focused application for defining data
requirements, discovering data products, initiating leases, and receiving the
results of data science tasks.

●​ P2P Network (libp2p): The communication backbone for agent discovery, direct
negotiation, and data exchange, using a Kademlia DHT for decentralized node
lookup.

●​ Storage Layer (IPFS/Filecoin): Decentralized storage for data payloads. All data
is content-addressed via IPFS CIDs. For payloads over 10 MB, a Filecoin storage
deal is negotiated and verified on-chain to ensure persistent, long-term
availability.

●​ Privacy Layer (PySyft): The framework for executing remote data science tasks.
For the MVP, this will focus on federated analysis and statistics on extracted
features, rather than end-to-end training of complex models, to ensure feasibility
on typical industrial PC hardware.

●​ Settlement Layer (Polygon PoS): The public blockchain for recording all
value-based transactions, enforcing agreements via smart contracts, and
distributing royalties.

2.3. Technology Stack (MVP)

●​ P2P Networking: Go-libp2p
●​ Blockchain: Polygon PoS
●​ Smart Contracts: Solidity
●​ Storage: IPFS, Filecoin
●​ Agent Backend: Go / Python
●​ Agent Frontend: Electron / React
●​ Privacy Computation: PySyft

3. Core Data Models & Schemas (MVP Focus)
This section defines the initial data structures for the MVP, focusing on the two
prioritized data types.

3.1. DataProduct Schema

This is the public-facing listing that an Earner publishes to the DHT to advertise their
available data.

{​

 "schemaVersion": "1.1",​
 "productId": "did:pandacea:earner:123/abc-456",​
 "ownerDid": "did:pandacea:earner:123",​
 "name": "Novel Package 3D Scans - Warehouse A",​
 "description": "High-fidelity point cloud data of irregularly shaped packages
captured by a robotic arm-mounted LiDAR sensor.",​
 "dataType": "RoboticSensorData",​
 "keywords": ["robotics", "3d-scan", "lidar", "logistics", "grasping"],​
 "sampleCid": "bafybeig...xyz" // IPFS CID of a small, representative sample​
}​

3.2. MVP Data Type 1: RoboticSensorData

The schema for the actual data payload referenced by a DataProduct of this type.
This metadata is stored alongside the raw data file (e.g., a .pcd file) on IPFS.

{​
 "schemaVersion": "1.1",​
 "captureTimestamp": "2025-07-12T19:50:00Z",​
 "sensorType": "LIDAR",​
 "sensorModel": "Velodyne Puck VLP-16",​
 "dataFormat": "PCD_BINARY",​
 "payloadCid": "bafybeig...abc", // IPFS CID of the actual .pcd file​
 "storageDealId": "123456", // On-chain Filecoin deal ID if payload > 10MB​
 "metadata": {​
 "robotId": "arm-07",​
 "warehouseId": "ATL-01",​
 "taskContext": "novel_package_scan",​
 "taskOutcome": "scan_success",​
 "dimensions_mm": { "x": 350, "y": 210, "z": 155 },​
 "estimatedWeight_g": 850​
 }​
}​

3.3. MVP Data Type 2: LogisticsEventData

The schema for non-robotic but robotic-adjacent data, likely sourced from a
Warehouse Management System (WMS) via an API connector in the MyData Agent.

{​
 "schemaVersion": "1.0",​
 "eventTimestamp": "2025-07-12T19:52:10Z",​
 "eventType": "INBOUND_SCAN",​
 "locationId": "receiving-dock-03",​
 "itemIdentifier": {​
 "type": "UPC",​
 "value": "012345678905"​
 },​
 "metadata": {​
 "operatorId": "emp-451",​
 "equipmentUsed": "handheld_scanner_zebra_mc9300",​
 "discrepancyCode": null // e.g., 'DAMAGED_BOX', 'WRONG_ITEM'​
 }​
}​

4. Agent Architecture & Interaction Flow
4.1. Agent Discovery & Lease Interaction Flow

The following sequence diagram illustrates the end-to-end flow for a data lease
transaction.

sequenceDiagram​
 participant Spender as Buyer-Side Agent​
 participant DHT as KAD-DHT​
 participant Earner as MyData Agent​
 participant Polygon as Settlement Layer​
​
 Spender->>DHT: Query for DataProducts with keyword "lidar"​
 DHT-->>Spender: Return list of matching DataProducts & peer IDs​
 Spender->>Earner: Initiate direct connection (libp2p)​
 Spender->>Earner: Request lease for `productId`​
 Earner->>Earner: Evaluate request against local policy (OPA)​
 Note over Earner: Manual Approval: Send push notification to user​
 Earner-->>Spender: Approve lease terms (price from PDVF)​
 Spender->>Polygon: Call `createLease()` with terms & payment​
 Polygon-->>Spender: LeaseCreated event with `leaseId`​
 Spender->>Earner: Send `leaseId` as proof of payment​

 Earner->>Polygon: Verify `leaseId` on-chain​
 Note over Earner, Spender: Execute Federated Analysis of Features (PySyft)​
 Earner->>Spender: Send aggregated results​
 Spender->>Polygon: Finalize lease (optional, can be automated)​
 Polygon->>Earner: Release funds​
 Polygon->>Polygon: Record transaction for Royalty & Reputation calculation​

4.2. MyData Agent - WMS Connector Architecture

The integration with Warehouse Management Systems will follow a pragmatic,
two-phase approach:

●​ Phase 1 (MVP): Direct API Adapter. For our initial warehouse logistics partner,
we will build a custom, point-to-point adapter. This adapter will be a module
within the MyData Agent that connects directly to the partner's specific WMS API
(e.g., REST, SOAP), authenticates, and transforms their proprietary event data into
our canonical LogisticsEventData format. This minimizes initial complexity and
accelerates time-to-market.

●​ Phase 2 (Post-MVP): Middleware Pattern. As we onboard more partners, we
will refactor the connector architecture to use a middleware pattern. The MyData
Agent will communicate with a central, protocol-level service that manages
multiple adapters and exposes a single, unified API. This aligns with enterprise
best practices and ensures long-term scalability and maintainability.

5. Smart Contract Interfaces (Polygon PoS - MVP)
This section defines the primary functions for the core smart contracts. These are
simplified for clarity.

5.1. LeaseAgreement.sol

interface ILeaseAgreement {​
 // Events​
 event LeaseCreated(bytes32 leaseId, address spender, address earner, uint256
price);​
 event LeaseApproved(bytes32 leaseId);​
 event LeaseExecuted(bytes32 leaseId);​
​
 // Functions​
 function createLease(address earner, bytes32 dataProductId, uint256 maxPrice)
external payable;​

 function approveLease(bytes32 leaseId) external; // Called by Earner​
 function executeLease(bytes32 leaseId) external; // Called by Spender​
 function raiseDispute(bytes32 leaseId, string calldata reason) external;​
}​

5.2. RoyaltyDistributor.sol

interface IRoyaltyDistributor {​
 // Events​
 event RoyaltiesRecorded(bytes32 dataProductId, uint256 amount);​
 event RoyaltiesClaimed(address earner, uint256 amount);​
​
 // Functions​
 function recordRoyalties(bytes32 leaseId, bytes32 dataProductId) external payable;​
 function claimRoyalties() external; // Batched claim for a user​
}​

5.3. Reputation.sol

interface IReputation {​
 // Functions​
 function updateReputation(address user, bool successfulLease) external;​
 function getReputation(address user) external view returns (uint256);​
}​

6. Security Considerations (Initial Threat Model)
●​ Data Poisoning:

○​ Threat: An Earner provides malicious or garbage data to sabotage a
Spender's AI model.

○​ Mitigation (MVP): The Reputation contract will penalize bad actors. The
sampleCid in the DataProduct allows for pre-lease verification. The Pandacea
Arbitration Court (PAC) provides a mechanism for recourse.

●​ Sybil Attacks on DHT:
○​ Threat: An attacker creates thousands of fake nodes to pollute the DHT or

eclipse a specific user.
○​ Mitigation (MVP): Libp2p has some built-in resistance. We will require a small

PGT stake to publish a DataProduct, making Sybil attacks economically

infeasible.
●​ Smart Contract Exploits:

○​ Threat: Reentrancy attacks, oracle manipulation, etc.
○​ Mitigation (MVP): Adherence to Checks-Effects-Interactions pattern, use of

OpenZeppelin audited base contracts, and a mandatory comprehensive
third-party audit before mainnet launch.

7. Resolved Questions & Decisions (v1.1)
This section documents the resolution of the open questions from v1.0 based on the
recent research findings.

●​ Q1: Data Payload Size: What are the expected file sizes for 3D sensor data?
○​ Finding: File sizes can range from <1 MB for a single binary scan to over 1 GB

for a long-duration, high-resolution scan.
○​ Decision: The protocol must handle a wide range of file sizes. We will

mandate the use of compressed binary formats (e.g., binary PCD, LAZ) to
minimize storage. For payloads over a 10 MB threshold, the MyData Agent will
be responsible for negotiating and funding a Filecoin storage deal to ensure
persistent availability, with the deal ID being recorded on-chain as part of the
lease.

●​ Q2: WMS Connector Standardization: How do we build a generic connector for
multiple proprietary WMS APIs?
○​ Finding: A middleware/iPaaS approach with a canonical data model is the

scalable, long-term solution, but point-to-point adapters are faster for a
single integration.

○​ Decision: We will adopt a two-phase strategy as detailed in Section 4.2. The
MVP will use a direct adapter for our first partner to ensure speed and focus,
with the architecture designed for a future migration to a more scalable
middleware pattern.

●​ Q3: PySyft Performance: What is the performance overhead for executing
PySyft tasks on warehouse hardware?
○​ Finding: PySyft can have significant overhead (~2x slower), and performance

on constrained hardware (industrial PCs) is a major concern for complex
models like CNNs. Network conditions are also a critical factor.

○​ Decision: To de-risk the MVP, our initial implementation of the Privacy Layer
will not focus on end-to-end federated training of large models from raw data.
Instead, we will prioritize federated analytics on pre-processed features.
For example, the MyData Agent can locally extract key features (e.g., object
dimensions, centroids) from the 3D scans, and the federated task will be to

compute aggregate statistics or train simpler models on these much smaller
feature vectors. This approach drastically reduces the compute, memory, and
network burden while still providing significant privacy-preserving value.

	Pandacea Protocol - System Design Document (SDD)
	1. Overview
	1.1. Purpose
	1.2. MVP Scope & Objectives

	2. System Architecture
	2.1. Logical Architecture Diagram
	2.2. Component Breakdown
	2.3. Technology Stack (MVP)

	3. Core Data Models & Schemas (MVP Focus)
	3.1. DataProduct Schema
	3.2. MVP Data Type 1: RoboticSensorData
	3.3. MVP Data Type 2: LogisticsEventData

	4. Agent Architecture & Interaction Flow
	4.1. Agent Discovery & Lease Interaction Flow
	4.2. MyData Agent - WMS Connector Architecture

	5. Smart Contract Interfaces (Polygon PoS - MVP)
	5.1. LeaseAgreement.sol
	5.2. RoyaltyDistributor.sol
	5.3. Reputation.sol

	6. Security Considerations (Initial Threat Model)
	7. Resolved Questions & Decisions (v1.1)

